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What are neurons in V1 encoding?
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V1 RFs resemble Gabor filters and neural response is
sparse

Gabor filters
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Hierarchical visual processing
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Hierarchical visual processing in the mouse
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Modulation of Visual Responses by Behavioral State
in Mouse Visual Cortex
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Binocular vision in humans and mice
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From week 1:
many unsolved challenge...

In
Systems Neuroscience

J. Leo van Hemmen  Terrence J. Sejnowski

How Do Neurons Interact?

7. How Can the Brain Be So Fast?

8. What Is the Neural Code?

9. Are Single Cortical Neurons Soloists or Are They
Obedient Members of a Huge Orchestra?

10. What Is the Other 85 Percent of V1 Doing?

COMPUTATIONAL NEUROSCIENCE




From this week: \What other tasks? What other stimuli is
the brain (visual) encoding?

Biological: recordings in visual system Building “digital twins”, NN models of the system

vision

Closed loop
experimental

design

Hubel & Wiesel discoveries in cat V1
inspired convolutional neural networks

Can we use our NN to produce
predictions of optimal stimuli?
Can this help reveal anew
computational principle, or
validate a discovered rule?

We now now a lot more (faces,
motion, value coding) but we
never can give enough stimuli ....
What would the ideal stimulus

be fOI' a given neuron? Mathis, Perez Rotondo, Chang, Tolias, Mathis (unpublished) 31




— Cortical sensory processings is nonlinear, inputs are high dimensional.

What are the other neural responses in V1
representing?

Aim: Develop a deep predictive model for causal testing of visual processing.



Section Paper:

Inception loops discover what excites neurons
most using deep predictive models

Edgar Y. Walker ©'28* Fabian H. Sinz®"2348* Erick Cobos'?, Taliah Muhammad'?,
Emmanouil Froudarakis ©'2, Paul G. Fahey'?, Alexander S. Ecker®'356, Jacob Reimer'?,
Xaq Pitkow @27 and Andreas S. Tolias ®"%7*

Finding sensory stimuli that drive neurons optimally is central to understanding information processing in the
brain. However, optimizing sensory input is difficult due to the predominantly nonlinear nature of sensory
processing and high dimensionality of the input. We developed ‘inception loops’, a closed-loop experimental
paradigm combining in vivo recordings from thousands of neurons with in silico nonlinear response modeling.
Our end-to-end trained, deep-learning-based model predicted thousands of neuronal responses to arbitrary,
new natural input with high accuracy and was used to synthesize optimal stimuli—most exciting inputs (MEls).
For mouse primary visual cortex (V1), MEls exhibited complex spatial features that occurred frequently in natural
scenes but deviated strikingly from the common notion that Gabor-like stimuli are optimal for V1. When
presented back to the same neurons in vivo, MEls drove responses significantly better than control stimuli.
Inception loops represent a widely applicable technique for dissecting the neural mechanisms of sensation.



Figure 1. Experimental paradigm and model

A Record
Test
o M.l-AJvIL_M_Jv
A
W
\A—AI_AMAM

Neural activity

Natural 4
images 4

Train (day 1)
Optimize (night)
Test (day 2) Fit

Model activity

MEI

Artificial neural network e

W\JM'\._A_M
_}M
PNV WV W |

Explain the experimental setup. What is the goal?

closed-loop experimental paradigm combining in silico modeling (data-driven models) and in vivo neural recordings
(causal testing) to synthesize stimuli that evoke a desired response confirmed in vivo. Causal testing of visual
processing.
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What is Panel (b.) showing?

Dataset: 5’100 unique natural images (ImageNet).
500ms each. 100 images x 10 repeat.

random ITIl. Mouse head-fixed, cylindrical treadmill.
Recording: ~2000 neurons per animal, 5 animals,
V1 L2/3, wide-field 2P microscope.

Why do they allow the mice to run during the
experiment?

Movements have been shown to be an important
modulator in visual responses in mice (Niell & Stryker
2010).

Why do they consider neural activity on a time window of 50-550 ms after image onset?

Time window 50 ms after image onset to consider signal latency to reach the visual cortex.



Figure 1. Experimental paradigm and model
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I Modulator network Why do the authors added the shifter network?

I \ L % Account for receptive fields shifts from pupil position changes.
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And the modulator network?

Attenuate the effect of movement (running state) and arousal
(pupil dilation) on visual responses.

NNO pa32els

9&;/

Stimuli



Reminder: Field of view

Field of view: If you record from a retinal ganglion cell (RGC).
They fire APs with generally two types of responses:

"ON-center":
1 AP- frequency
in the center of the receptive field (RF)

On-center
ganglion cell

"OFF center"
| AP-frequency

Off-center in the center of the RF
ganglion cell

Single-cell recordings of sensory neurons at any position on the retina (sensory epithelium)



Figure 1. Experimental paradigm and model

5 Why are they comparing a nonlinear (CNN) to a linear (LN)
g Used model?
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How is the MEI optimized?

- 150 neurons reliable and reasonably well-predicted by
both the CNN and the LN model.
- regularized gradient ascent from random image.

Image feature 1



Figure 2. Most Exciting Inputs (MEIs)

From the way RFs are traditionally
thought about in V1, what can you say
about the obtained MEIs? Is it what you
would expect?

Some resulting MEIs are Gabor-like. Lots of
them deviate substantially from Gabor-shaped
V1 RFs — sharp corners, checkerboard
patterns, irregular pointillist textures and a
variety of curved strokes.




Figure 2. Most Exciting Inputs (MEIs)

Neurons
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Why do we see sparsity?

- Neuron activation with high specificity
for each MEI.

- Sparse response (few images
activating a neuron).

Sparse coding in the visual cortex.



Observed response (a.u.)

Figure 2. Most Exciting Inputs (MEIs)

One example neuron
Correlation = 0.89
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Predicted response (a.u.)

Frequency

125

750 neurons (all mice)

Correlation coefficient

Model predictions correlates highly with observed responses.



Recap:

They manage to obtain MEls that are specific to a neuron in V1.

Now, how can we understand the specific visual features encoded by those neurons?

What else should we compare the MEls to?



More similar

Figure 3/4. Comparison of MEIs and linear RFs

Mouse 1

Observation?

More different

MEIls drive stronger neural response than linear RFs from the LN.
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black: significant difference

in mean response
(P<0.05).



Figure 3/4. Comparison of MEIs and Gabor filters
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Figure 3/4. Comparison of MEls and best masked natural images

Observation?

MEIls drive stronger neural response than
masked natural images + resemblance.
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Figure 3/4. Comparison of MEIls and full-field natural images
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Figure 3/4. Comparison of MEls and other control stimuli.
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On average:

e 1.6% of images
produced activations
above 0.5 of MEI
activation.

e 0.04% above 0.75. of
the MEI activation.

— more support for sparse
encoding in V1.



Paper round-up

They propose a closed-loop experimental paradigm combining in vivo
recordings from thousands of neurons with in silico nonlinear response
modeling.

They show that high-performing, end-to-end trained, black-box models of the
visual system generalize and can make in silico inferences about nontrivial
computational properties of V1 neurons.

They find that most MEIs deviate strikingly from Gabor-like stimuli, suggesting
that even mouse V1 neurons prefer features that are more complex than the
classical oriented edges (Gabor) described by Hubel and Wiesel.

They show that the perceptual attributes of MEIs occur often in natural
scenes.

They propose their method to verify experimentally predictive models of
optimized stimuli.



What did we learn? What questions do we have?

e What points do they make in the discussion?

e Is anything unclear?

e What would you do next if you had to desigh an experiment?

Online causal testing rather than during the night? Build a foundation model of the
visual cortex — Wang, 2023, preprint.

Apply to other visual cortex areas? — Wang, 2023, preprint.

Apply to other models — Bashivan, 2023, Science

Video rather than images — integration of motion to the RFs.
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Wang, 2023, preprint



